As Vision Language Models (VLMs) become increasingly accessible to farmers and agricultural experts, there is a growing need to evaluate their potential in specialized tasks. We present AgEval, a comprehensive benchmark for assessing VLMs' capabilities in plant stress phenotyping, offering a solution to the challenge of limited annotated data in agriculture. Our study explores how general-purpose VLMs can be leveraged for domain-specific tasks with only a few annotated examples, providing insights into their behavior and adaptability. AgEval encompasses 12 diverse plant stress phenotyping tasks, evaluating zero-shot and few-shot in-context learning performance of state-of-the-art models including Claude, GPT, Gemini, and LLaVA. Our results demonstrate VLMs' rapid adaptability to specialized tasks, with the best-performing model showing an increase in F1 scores from 46.24% to 73.37% in 8-shot identification. To quantify performance disparities across classes, we introduce metrics such as the coefficient of variation (CV), revealing that VLMs' training impacts classes differently, with CV ranging from 26.02% to 58.03%. We also find that strategic example selection enhances model reliability, with exact category examples improving F1 scores by 15.38% on average. AgEval establishes a framework for assessing VLMs in agricultural applications, offering valuable benchmarks for future evaluations. Our findings suggest that VLMs, with minimal few-shot examples, show promise as a viable alternative to traditional specialized models in plant stress phenotyping, while also highlighting areas for further refinement. Results and benchmark details are available at: https://github.com/arbab-ml/AgEval
Visualization of AgEval Benchmark Dataset - This treemap illustrates the distribution of datasets used in AgEval for plant stress identification, classification, and quantification.
Individual tasks of the AgLLM benchmark across different shot settings (0 to 8 shots) for top-4 performing LLMs.
@article{
title={Leveraging Vision Language Models for Specialized Agricultural Tasks},
author={Muhammad Arbab Arshad, Talukder Zaki Jubery, Tirtho Roy, Rim Nassiri, Asheesh K. Singh, Arti Singh, Chinmay Hegde, Baskar Ganapathysubramanian, Aditya Balu, Adarsh Krishnamurthy, Soumik Sarkar},
year={2025},
journal={IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
}